Maximal superintegrability on N -dimensional curved spaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 36 L93
(http://iopscience.iop.org/0305-4470/36/7/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.89
The article was downloaded on 02/06/2010 at 17:22

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Maximal superintegrability on \boldsymbol{N}-dimensional curved spaces

Angel Ballesteros ${ }^{1}$, Francisco J Herranz ${ }^{1}$, Mariano Santander ${ }^{2}$ and Teresa Sanz-Gil ${ }^{2}$
${ }^{1}$ Departamento de Física, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
${ }^{2}$ Departamento de Física Teórica, Facultad de Ciencias, Universidad de Valladolid 47011 Valladolid, Spain

Received 15 November 2002
Published 5 February 2003
Online at stacks.iop.org/JPhysA/36/L93

Abstract

A unified algebraic construction of the classical Smorodinsky-Winternitz systems on the $N \mathrm{D}$ sphere, Euclidean and hyperbolic spaces through the Lie groups $S O(N+1), I S O(N)$ and $S O(N, 1)$ is presented. Firstly, general expressions for the Hamiltonian and its integrals of motion are given in a linear ambient space \mathbb{R}^{N+1}, and secondly they are expressed in terms of two geodesic coordinate systems on the $N \mathrm{D}$ spaces themselves, with an explicit dependence on the curvature as a parameter. On the sphere, the potential is interpreted as a superposition of $N+1$ oscillators. Furthermore, each Lie algebra generator provides an integral of motion and a set of $2 N-1$ functionally independent ones are explicitly given. In this way the maximal superintegrability of the N D Euclidean Smorodinsky-Winternitz system is shown for any value of the curvature.

PACS numbers: 02.30.Ik, 02.20.Qs, $02.40 . \mathrm{Ky}$

Superintegrable systems on the two- and three-dimensional (3D) Euclidean spaces have been classified in [1, 2], and also extended to the 2D and 3D spheres [3] as well as to the hyperbolic spaces $[4,5]$. Recent classifications of superintegrable systems for these 2D Riemannian spaces can be found in [6-8]. In the 2D sphere there are two (maximal) superintegrable potentials: the harmonic oscillator $\left(\tan ^{2} r\right)$ with 'centrifugal terms' and the Kepler or Coulomb potential $(1 / \tan r)$ with some 'additional' terms. The former is the version with non-zero curvature of the Smorodinsky-Winternitz (SW) system [9-12]. Both potentials $\tan ^{2} r$ and $1 / \tan r$ on the $N \mathrm{D}$ sphere have been studied in quantum mechanics in [13-15], and have been mutually related in $[16,17]$.

The SW Hamiltonian on the ND Euclidean space is given by

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} \sum_{i=1}^{N}\left(p_{i}^{2}+2 \beta_{0} q_{i}^{2}+\frac{2 \beta_{i}}{q_{i}^{2}}\right) . \tag{1}
\end{equation*}
$$

The following functions are integrals of motion for (1) $(i<j ; i, j=1, \ldots, N)$:

$$
\begin{align*}
& I_{0 i}=\tilde{P}_{i}^{2}+2 \beta_{0} q_{i}^{2}+2 \frac{\beta_{i}}{q_{i}^{2}} \quad \text { with } \quad \tilde{P}_{i}=p_{i} \tag{2}\\
& I_{i j}=\tilde{J}_{i j}^{2}+2 \beta_{i} \frac{q_{j}^{2}}{q_{i}^{2}}+2 \beta_{j} \frac{q_{i}^{2}}{q_{j}^{2}} \quad \text { with } \quad \tilde{J}_{i j}=q_{i} p_{j}-q_{j} p_{i} \tag{3}
\end{align*}
$$

Set (2) comes from the separability of the Hamiltonian $2 \mathcal{H}=\sum_{i} I_{0 i}$, while (3) are just the square of the components of the angular momentum tensor and some additional terms. The functions $\tilde{P}_{i}, \tilde{J}_{i j}$ close the commutation relations of the Euclidean algebra iso (N) with respect to the canonical Lie-Poisson bracket:

$$
\begin{equation*}
\{f, g\}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial q_{i}} \frac{\partial f}{\partial p_{i}}\right) . \tag{4}
\end{equation*}
$$

Our aim is to construct, simultaneously, the non-zero curvature version of (1) on the three classical Riemannian spaces with constant curvature in arbitrary dimension, as well as to prove its maximal superintegrability, from a group theoretical standpoint.

Let $s o_{\kappa}(N+1)$ be the real Lie algebra of the Lie group $S O_{\kappa}(N+1)$ with generators $\left\{J_{0 i} \equiv P_{i}, J_{i j}\right\}(i, j=1, \ldots, N ; i<j)$ and non-vanishing commutation relations given by

$$
\begin{array}{lll}
{\left[J_{i j}, J_{i k}\right]=J_{j k}} & {\left[J_{i j}, J_{j k}\right]=-J_{i k}} & {\left[J_{i k}, J_{j k}\right]=J_{i j}} \\
{\left[J_{i j}, P_{i}\right]=P_{j}} & {\left[J_{i j}, P_{j}\right]=-P_{i}} & {\left[P_{i}, P_{j}\right]=\kappa J_{i j}} \tag{5}
\end{array}
$$

with $i<j<k$. If we consider the following Cartan decomposition of $\operatorname{so}_{\kappa}(N+1)$:

$$
\begin{equation*}
\operatorname{so}_{\kappa}(N+1)=h \oplus p \quad h=\left\langle J_{i j}\right\rangle \quad p=\left\langle P_{i}\right\rangle \tag{6}
\end{equation*}
$$

where h is the Lie algebra of $H \simeq S O(N)$, we obtain a family of N D symmetric homogeneous spaces $S_{[\kappa]}^{N}=S O_{\kappa}(N+1) / S O(N)$ parametrized by κ, which turns out to be the constant sectional curvature of the space. Thus, $J_{i j}$ leave a point \mathcal{O} invariant by acting as rotations, while P_{i} generate translations that move \mathcal{O} along N basic geodesics l_{i} orthogonal at \mathcal{O}. For $\kappa>,=,<0, S_{[\kappa]}^{N}$ reproduces the sphere $\mathbf{S}^{N}=S O(N+1) / S O(N)$, Euclidean $\mathbf{E}^{N}=I S O(N) / S O(N)$ and hyperbolic $\mathbf{H}^{N}=S O(N, 1) / S O(N)$ spaces, respectively. The case $\kappa=0$ is the contraction around $\mathcal{O}: \mathbf{S}^{N} \rightarrow \mathbf{E}^{N} \leftarrow \mathbf{H}^{N}$.

The vector representation of $s_{\kappa}(N+1)$ is given by $(N+1) \times(N+1)$ real matrices:

$$
\begin{equation*}
P_{i}=-\kappa e_{0 i}+e_{i 0} \quad J_{i j}=-e_{i j}+e_{j i} \tag{7}
\end{equation*}
$$

where $e_{i j}$ is the matrix with entries $\left(e_{i j}\right)_{m}^{l}=\delta_{i}^{l} \delta_{j}^{m}$. Any generator X of $o_{\kappa}(N+1)$ fulfils

$$
\begin{equation*}
X^{\mathrm{T}} \Lambda+\Lambda X=0 \quad \Lambda=e_{00}+\kappa \sum_{i=1}^{N} e_{i i}=\operatorname{diag}(1, \kappa, \ldots, \kappa) \tag{8}
\end{equation*}
$$

so that any element $G \in S O_{\kappa}(N+1)$ verifies $G^{\mathrm{T}} \Lambda G=\Lambda$. In this way, $S O_{\kappa}(N+1)$ is a group of linear transformations in an ambient space \mathbb{R}^{N+1}, with Weierstrass coordinates $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{N}\right)$, acting as the group of isometries of the bilinear form Λ via matrix multiplication. The Lie group $H \simeq S O(N)=\left\langle J_{i j}\right\rangle$ is the isotopy subgroup of the origin $\mathcal{O}=(1,0, \ldots, 0) \in \mathbb{R}^{N+1}$. The space $S_{[k]}^{N}$ is identified with the orbit of \mathcal{O}, which is contained in the 'sphere' Σ :

$$
\begin{equation*}
\Sigma \equiv x_{0}^{2}+\kappa \sum_{i=1}^{N} x_{i}^{2}=1 \tag{9}
\end{equation*}
$$

and the metric on $S_{[k]}^{N}$ comes from the flat ambient metric in \mathbb{R}^{N+1} in the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\left.\frac{1}{\kappa}\left(\mathrm{~d} x_{0}^{2}+\kappa \sum_{i=1}^{N} \mathrm{~d} x_{i}^{2}\right)\right|_{\Sigma} \tag{10}
\end{equation*}
$$

A point $Q \in S_{[k]}^{N}$ with Weierstrass coordinates \mathbf{x} can be reached in different ways starting from \mathcal{O} through the action of N one-parametric subgroups of $S O_{\kappa}(N+1)$:

$$
\begin{align*}
\mathbf{x} & =\exp \left(a_{1} P_{1}\right) \exp \left(a_{2} P_{2}\right) \cdots \exp \left(a_{N-1} P_{N-1}\right) \exp \left(a_{N} P_{N}\right) \mathcal{O} \tag{11}\\
& =\exp \left(\theta_{N} J_{N-1 N}\right) \exp \left(\theta_{N-1} J_{N-2 N-1}\right) \cdots \exp \left(\theta_{2} J_{12}\right) \exp \left(r P_{1}\right) \mathcal{O}
\end{align*}
$$

The canonical parameters involved are intrinsic quantities on $S_{[k]}^{N}$, called geodesic parallel $a=\left(a_{1}, \ldots, a_{N}\right)$ and geodesic polar $\theta=\left(r, \theta_{2}, \ldots, \theta_{N}\right)$ coordinates of the point \mathbf{x} :

$$
\begin{align*}
& x_{0}=\prod_{s=1}^{N} \mathrm{C}_{\kappa}\left(a_{s}\right)=\mathrm{C}_{\kappa}(r) \\
& x_{1}=\mathrm{S}_{\kappa}\left(a_{1}\right) \prod_{s=2}^{N} \mathrm{C}_{\kappa}\left(a_{s}\right)=\mathrm{S}_{\kappa}(r) \cos \theta_{2} \\
& x_{i}=\mathrm{S}_{\kappa}\left(a_{i}\right) \prod_{s=i+1}^{N} \mathrm{C}_{\kappa}\left(a_{s}\right)=\mathrm{S}_{\kappa}(r) \prod_{s=2}^{i} \sin \theta_{s} \cos \theta_{i+1} \tag{12}\\
& x_{N}=\mathrm{S}_{\kappa}\left(a_{N}\right)=\mathrm{S}_{\kappa}(r) \prod_{s=2}^{N} \sin \theta_{s}
\end{align*}
$$

where the curvature-dependent functions $\mathrm{C}_{\kappa}(x)$ and $\mathrm{S}_{\kappa}(x)$ are defined by [17, 18]:
$\mathrm{C}_{\kappa}(x)=\left\{\begin{array}{ll}\cos \sqrt{\kappa} x & \kappa>0 \\ 1 & \kappa=0 \\ \cosh \sqrt{-\kappa} x & \kappa<0\end{array} \quad \mathrm{~S}_{\kappa}(x)= \begin{cases}\frac{1}{\sqrt{\kappa}} \sin \sqrt{\kappa} x & \kappa>0 \\ x & \kappa=0 . \\ \frac{1}{\sqrt{-\kappa}} \sinh \sqrt{-\kappa} x & \kappa<0\end{cases}\right.$
The κ-tangent is defined by $\mathrm{T}_{\kappa}(x)=\mathrm{S}_{\kappa}(x) / \mathrm{C}_{\kappa}(x)$; its contraction $\kappa=0$ is $\mathrm{T}_{0}(x)=x$.
Each parallel coordinate a_{i}, associated with P_{i}, has dimensions of length: a_{1} is the distance between \mathcal{O} and a point Q_{1}, measured along the basic geodesic $l_{1} ; a_{2}$ is the distance between Q_{1} and another point Q_{2}, measured along a geodesic l_{2}^{\prime} through Q_{1} and orthogonal to l_{1} (and 'parallel' in the sense of parallel transport to l_{2}) and so on, up to reaching Q [18]. On the other hand, the first polar coordinate r, associated with P_{1}, has dimensions of length and is the distance between \mathcal{O} and Q measured along the geodesic l joining both points. The remaining θ_{i}, associated with $J_{i-1 i}$, are ordinary angles, the polar angles of l relative to the reference flag at \mathcal{O} spanned by $\left\{l_{1}\right\},\left\{l_{1}, l_{2}\right\}, \ldots$ on the sphere \mathbf{S}^{N} with positive curvature $\kappa=1 / R^{2}$, the usual spherical coordinates, all of which are angles, differ from ours [19] only in the first coordinate, which conventionally is taken as the dimensionless quantity r / R (see for instance [20]). When $\kappa=0$, we recover directly the Cartesian and polar coordinates on \mathbf{E}^{N}.

Next, by introducing (12) in (10), we obtain the metric in $S_{[k]}^{N}$:

$$
\begin{align*}
\mathrm{d} s^{2} & =\sum_{i=1}^{N-1}\left(\prod_{s=i+1}^{N} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)\right) \mathrm{d} a_{i}^{2}+\mathrm{d} a_{N}^{2} \\
& =\mathrm{d} r^{2}+\mathrm{S}_{\kappa}^{2}(r)\left(\mathrm{d} \theta_{2}^{2}+\sum_{i=3}^{N}\left(\prod_{s=2}^{i-1} \sin ^{2} \theta_{s}\right) \mathrm{d} \theta_{i}^{2}\right) \tag{14}
\end{align*}
$$

which provides the kinetic energy \mathcal{T} in terms of the velocities $(\dot{q}=\dot{a}, \dot{\theta})$, that is, the Lagrangian $\mathcal{L} \equiv \mathcal{T}$ of a geodesic motion on $S_{[\kappa]}^{N}$. If we introduce the canonical momenta $p=\partial \mathcal{L} / \partial \dot{q}$ ($p=p, \pi$), we obtain the free Hamiltonian $\mathcal{H} \equiv \mathcal{T}$ on $S_{[\kappa]}^{N}$:

$$
\begin{align*}
\mathcal{T} & =\frac{1}{2}\left(\sum_{i=1}^{N-1} \frac{p_{i}^{2}}{\prod_{s=i+1}^{N} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)}+p_{N}^{2}\right) \\
& =\frac{1}{2}\left(\pi_{1}^{2}+\frac{\pi_{2}^{2}}{\mathrm{~S}_{\kappa}^{2}(r)}+\sum_{i=3}^{N} \frac{\pi_{i}^{2}}{\mathrm{~S}_{\kappa}^{2}(r) \prod_{s=2}^{i-1} \sin ^{2} \theta_{s}}\right) . \tag{15}
\end{align*}
$$

An N-particle realization of $s o_{\kappa}(N+1)$ in the phase space is obtained by starting from the following expressions in terms of Weierstrass coordinates:
$\tilde{P}_{i}(x(q), \dot{x}(q, p))=x_{0} \dot{x}_{i}-x_{i} \dot{x}_{0} \quad \tilde{J}_{i j}(x(q), \dot{x}(q, p))=x_{i} \dot{x}_{j}-x_{j} \dot{x}_{i}$
and expressing everything either in parallel (a, p) or polar (θ, π) canonical coordinates and momenta. In geodesic parallel coordinates, we obtain that $(i, j=1, \ldots, N)$
$\tilde{P}_{i}=\prod_{k=1}^{i} \mathrm{C}_{\kappa}\left(a_{k}\right) \mathrm{C}_{\kappa}\left(a_{i}\right) p_{i}+\kappa \mathrm{S}_{\kappa}\left(a_{i}\right) \sum_{s=1}^{i} \mathrm{~S}_{\kappa}\left(a_{s}\right) \frac{\prod_{m=1}^{s} \mathrm{C}_{\kappa}\left(a_{m}\right)}{\prod_{l=s}^{i} \mathrm{C}_{\kappa}\left(a_{l}\right)} p_{s}$
$\tilde{J}_{i j}=\mathrm{S}_{\kappa}\left(a_{i}\right) \mathrm{C}_{\kappa}\left(a_{j}\right) \prod_{s=i+1}^{j} \mathrm{C}_{\kappa}\left(a_{s}\right) p_{j}-\frac{\mathrm{C}_{\kappa}\left(a_{i}\right) \mathrm{S}_{\kappa}\left(a_{j}\right)}{\prod_{k=i+1}^{j} \mathrm{C}_{\kappa}\left(a_{k}\right)} p_{i}$

$$
\begin{equation*}
+\kappa \mathrm{S}_{\kappa}\left(a_{i}\right) \mathrm{S}_{\kappa}\left(a_{j}\right) \sum_{s=i+1}^{j} \mathrm{~S}_{\kappa}\left(a_{s}\right) \frac{\prod_{m=i+1}^{s} \mathrm{C}_{\kappa}\left(a_{m}\right)}{\prod_{l=s}^{j} \mathrm{C}_{\kappa}\left(a_{l}\right)} p_{s} \tag{17}
\end{equation*}
$$

while in geodesic polar coordinates the same quantities read $(i, j=1, \ldots, N-1)$
$\tilde{P}_{i}=\frac{\prod_{k=2}^{i+1} \sin \theta_{k}}{\tan \theta_{i+1}} \pi_{1}+\sum_{s=2}^{i+1} \frac{\prod_{m=s}^{i+1} \sin \theta_{m} \cos \theta_{s} \pi_{s}}{\mathrm{~T}_{\kappa}(r) \tan \theta_{i+1} \prod_{l=2}^{s} \sin \theta_{l}}-\frac{\pi_{i+1}}{\mathrm{~T}_{\kappa}(r) \prod_{l=2}^{i+1} \sin \theta_{l}}$
$\tilde{P}_{N}=\prod_{k=2}^{N} \sin \theta_{k} \pi_{l}+\sum_{s=2}^{N} \frac{\prod_{m=s}^{N} \sin \theta_{m} \cos \theta_{s}}{\mathrm{~T}_{k}(r) \prod_{l=2}^{s} \sin \theta_{l}} \pi_{s}$
$\tilde{J}_{i j}=\sin \theta_{i+1} \cos \theta_{j+1} \prod_{k=i+1}^{j} \sin \theta_{k} \pi_{i+1}-\frac{\cos \theta_{i+1} \sin \theta_{j+1}}{\prod_{l=i+1}^{j} \sin \theta_{l}} \pi_{j+1}$
$\tilde{J}_{i N}=\sin \theta_{i+1} \prod_{k=i+1}^{N} \sin \theta_{k} \pi_{i+1}+\cos \theta_{i+1} \sum_{s=i+1}^{N} \frac{\prod_{m=s}^{N} \sin \theta_{m} \cos \theta_{s}}{\prod_{l=i+1}^{s} \sin \theta_{l}} \pi_{s}$.
Both sets of generators (17) and (18) fulfil the commutation rules (5) with respect to the canonical Poisson bracket. The kinetic energy is related to the second-order Casimir of so $\kappa_{\kappa}(N+1)$ through

$$
\begin{equation*}
2 \mathcal{T}=\tilde{\mathcal{C}}=\sum_{i=1}^{N} \tilde{P}_{i}^{2}+\kappa \sum_{i, j=1}^{N} \tilde{J}_{i j}^{2} \tag{19}
\end{equation*}
$$

so that any generator Poisson-commutes with \mathcal{T}. The geodesic motion is maximally superintegrable and its integrals of motion come from any function of the Lie generators.

Now the crucial problem is to find potentials $\mathcal{U}(q)$ that can be added to \mathcal{T} in such a manner that the new Hamiltonian $\mathcal{H}=\mathcal{T}+\mathcal{U}$ preserves the maximal superintegrability. This requires adding 'some' terms to 'some' functions of the generators in order to ensure their involutivity with respect to \mathcal{H}. By taking into account the results given in [6] for \mathbf{S}^{2} and \mathbf{H}^{2}, we propose the following generalization of the SW potential (1) to the space $S_{[k]}^{N}$:

$$
\begin{align*}
\mathcal{U}=\beta_{0} \frac{\sum_{s=1}^{N} x_{s}^{2}}{x_{0}^{2}} & +\sum_{i=1}^{N} \frac{\beta_{i}}{x_{i}^{2}}=\beta_{0} \sum_{i=1}^{N} \frac{\mathrm{~S}_{\kappa}^{2}\left(a_{i}\right)}{\prod_{s=1}^{i} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)} \\
& +\sum_{i=1}^{N-1} \frac{\beta_{i}}{\mathrm{~S}_{\kappa}^{2}\left(a_{i}\right) \prod_{s=i+1}^{N} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)}+\frac{\beta_{N}}{\mathrm{~S}_{\kappa}^{2}\left(a_{N}\right)}=\beta_{0} T_{\kappa}^{2}(r) \\
& +\frac{1}{\mathrm{~S}_{\kappa}^{2}(r)}\left(\frac{\beta_{1}}{\cos ^{2} \theta_{2}}+\sum_{i=2}^{N-1} \frac{\beta_{i}}{\cos ^{2} \theta_{i+1} \prod_{s=2}^{i} \sin ^{2} \theta_{s}}+\frac{\beta_{N}}{\prod_{s=2}^{N} \sin ^{2} \theta_{s}}\right) . \tag{20}
\end{align*}
$$

On the sphere \mathbf{S}^{N} with $\kappa>0$, this can be interpreted as the joint potential due to a superposition of $N+1$ harmonic oscillators whose centres are placed at $N+1$ points on \mathbf{S}^{N} mutually separated a quadrant (a distance $\pi / 2 \sqrt{\kappa}$, which for $\kappa=1$ is $\pi / 2$); on \mathbf{S}^{2} these would be placed at the three vertices of an sphere's octant [21]. Explicitly, if we take $\kappa=1$ and consider the polar coordinate r together with N geodesic distances $r_{i}(i=1, \ldots, N)$ such that $x_{0}=\cos r, x_{i}=\cos r_{i}$, the potential (20) turns out to be

$$
\begin{equation*}
\mathcal{U}=\beta_{0} \tan ^{2} r+\sum_{i=1}^{N} \frac{\beta_{i}}{\cos ^{2} r_{i}}=\beta_{0} \tan ^{2} r+\sum_{i=1}^{N} \beta_{i} \tan ^{2} r_{i}+\sum_{i=1}^{N} \beta_{i} \tag{21}
\end{equation*}
$$

The first term is $\beta_{0} \tan ^{2} r$, where r is the distance from the particle and the origin \mathcal{O} along the geodesic l; this is the spherical Higgs potential with centre at \mathcal{O} where the 0 th coordinate axis x_{0} in the ambient space intersects the sphere. Each of the N remaining terms (apparently very different in (20)), $\beta_{i} \tan ^{2} r_{i}$, is written in terms of the spherical distance r_{i} to the point where the i th coordinate axis x_{i} intersects the sphere. Under the contraction $\kappa=0, \mathbf{S}^{N} \rightarrow \mathbf{E}^{N}$, the first term gives rise to the 'flat' harmonic oscillator $r^{2}=\sum_{i} a_{i}^{2}$, while the N remaining oscillators (whose centres would be now 'at infinity') leave the 'centrifugal' barriers β_{i} / a_{i}^{2} as their imprints.

Let us consider the following functions $I_{i j}(i<j ; i, j=0,1, \ldots, N)$:

$$
\begin{equation*}
I_{i j}=\left(x_{i} \dot{x}_{j}-x_{j} \dot{x}_{i}\right)^{2}+2 \beta_{i} \frac{x_{j}^{2}}{x_{i}^{2}}+2 \beta_{j} \frac{x_{i}^{2}}{x_{j}^{2}} \tag{22}
\end{equation*}
$$

which are quadratic in the momenta through the square of the generators. In parallel coordinates with the phase-space realization (17), they turn out to be

$$
\begin{align*}
I_{0 i} & =\tilde{P}_{i}^{2}+2 \beta_{0} \frac{\mathrm{~S}_{\kappa}^{2}\left(a_{i}\right)}{\prod_{s=1}^{i} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)}+2 \beta_{i} \frac{\prod_{s=1}^{i} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)}{\mathrm{S}_{\kappa}^{2}\left(a_{i}\right)} \\
I_{i j} & =\tilde{J}_{i j}^{2}+2 \beta_{i} \frac{S_{\kappa}^{2}\left(a_{j}\right)}{\mathrm{S}_{\kappa}^{2}\left(a_{i}\right) \prod_{s=i+1}^{j} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)}+2 \beta_{j} \frac{\mathrm{~S}_{\kappa}^{2}\left(a_{i}\right) \prod_{s=i+1}^{j} \mathrm{C}_{\kappa}^{2}\left(a_{s}\right)}{\mathrm{S}_{\kappa}^{2}\left(a_{j}\right)} \tag{23}
\end{align*}
$$

Likewise these can be written in geodesic polar coordinates. Hereafter, we consider the Hamiltonian $\mathcal{H}=\mathcal{T}+\mathcal{U}$ with \mathcal{T} and \mathcal{U} given in (15) and (20). Note that the analogous property to (19) is given by

$$
\begin{equation*}
2 \mathcal{H}=\sum_{i=1}^{N} I_{0 i}+\kappa \sum_{i, j=1}^{N} I_{i j}+2 \kappa \sum_{i=1}^{N} \beta_{i} . \tag{24}
\end{equation*}
$$

When $\kappa=0$, the expressions (17), (23) and (24) reduce to (1)-(3). Next it can be proven that:
Proposition 1. The $N(N+1) / 2$ functions (23) are integrals of the motion for \mathcal{H}.
Let us choose the following subsets $Q^{(k)}$ and $Q_{(k)}$ of $N-1$ integrals $(k=2, \ldots, N)$:

$$
\begin{equation*}
Q^{(k)}=\sum_{i, j=1}^{k} I_{i j} \quad Q_{(k)}=\sum_{i, j=N-k+1}^{N} I_{i j} \tag{25}
\end{equation*}
$$

where $Q^{(N)} \equiv Q_{(N)}$. The maximal superintegrability of \mathcal{H} is characterized as follows.

Theorem 2.

(i) The N functions $\left\{Q^{(2)}, \ldots, Q^{(N)}, \mathcal{H}\right\}$ are mutually in involution. The same property holds for the $\operatorname{set}\left\{Q_{(2)}, \ldots, Q_{(N)}, \mathcal{H}\right\}$.
(ii) The $2 N-1$ functions $\left\{Q^{(2)}, \ldots, Q^{(N-1)}, Q^{(N)} \equiv Q_{(N)}, Q_{(N-1)}, \ldots, Q_{(2)}, I_{0 i}, \mathcal{H}\right\}$ (with i fixed) are functionally independent, thus \mathcal{H} is maximally superintegrable.

The set $Q^{(k)}$ can be associated with a sequence of orthogonal subalgebras within $h=s o(N)=\left\langle J_{i j}\right\rangle$, the generators of which determine the terms quadratic in the momenta in the integrals $I_{i j}$ starting 'upwards' from $\left\langle J_{12}\right\rangle=s o(2)$:

$$
\begin{array}{lllllll}
Q^{(2)} & \subset Q^{(3)} & \subset \ldots & \subset Q^{(k)} & \subset \ldots & \subset Q^{(N-1)} & \subset Q^{(N)} \\
\operatorname{so(2)} & \subset \operatorname{so}(3) & \subset \ldots & \subset \operatorname{so}(k) & \subset \ldots & \subset \operatorname{so}(N-1) & \subset \operatorname{so}(N)
\end{array}
$$

with a similar embedding for $Q_{(k)}$ but starting 'backwards' from $\left\langle J_{N-1 N}\right\rangle=s o(2)$. In fact, the SW system on \mathbf{E}^{N} can be constructed from a coalgebra approach [22] by means of N copies of $s l(2, \mathbb{R})$. When $\kappa=0$, each $Q^{(k)}\left(\right.$ or $\left.Q_{(k)}\right)$ is related to the k th order coproduct of the Casimir of $\operatorname{sl}(2, \mathbb{R})[23]$. In this sense, the results of theorem 2 show that the set of integrals ensuring the maximal superintegrability of the 'flat' SW system coming from a $\operatorname{sl}(2, \mathbb{R})$-coalgebra also hold for any curvature.

Explicit proofs and details for this algebraic construction (which could also be applied to the N D Kepler potential) will be given elsewhere. Furthermore, the consideration of a second contraction parameter κ_{2}, that determines the signature of the metric [17, 18], would allow one to obtain superintegrable systems on different spacetimes.

Acknowledgments

This work was partially supported by the Ministerio de Ciencia y Tecnología, Spain (Projects BFM2000-1055 and BFM2002-03773). The authors are also grateful to G S Pogosyan for helpful discussions.

References

[1] Evans N W 1990 Phys. Rev. A 415666
[2] Kalnins E G, Williams G C, Miller W Jr and Pogosyan G S 1999 J. Math. Phys. 40708
[3] Grosche C, Pogosyan G S and Sissakian A N 1995 Fortschr. Phys. 43523
[4] Kalnins E G, Miller W Jr and Pogosyan G S 1997 J. Math. Phys. 385416
[5] Grosche C, Pogosyan G S and Sissakian A N 1997 Phys. Part. Nuclei 28486
[6] Rañada M F and Santander M 1999 J. Math. Phys. 405026
[7] Kalnins E G, Miller W Jr and Pogosyan G S 2000 J. Phys. A: Math. Gen. 336791
[8] Kalnins E G, Kress J M, Pogosyan G S and Miller W Jr 2001 J. Phys. A: Math. Gen. 344705
[9] Fris J, Mandrosov V, Smorodinsky Ya A, Uhlir M and Winternitz P 1965 Phys. Lett. 16354
[10] Evans N W 1990 Phys. Lett. A 147483
[11] Evans N W 1991 J. Math. Phys. 323369
[12] Grosche C, Pogosyan G S and Sissakian A N 1995 Fortschr. Phys. 43453
[13] Schrödinger E 1940 Proc. R. Ir. Acad. A 469
[14] Higgs P W 1979 J. Phys. A: Math. Gen. 12309
[15] Leemon H I 1979 J. Phys. A: Math. Gen. 12489
[16] Kalnins E G, Miller W Jr and Pogosyan G S 2002 Phys. Atom. Nucl. 651086 Nersessian A and Pogosyan G 2001 Phys. Rev. A 63 020103(R)
[17] Herranz F J, Ortega R and Santander M 2000 J. Phys. A: Math. Gen. 334525
[18] Herranz F J and Santander M 2002 J. Phys. A: Math. Gen. 356601
[19] Rañada M F and Santander M 2002 J. Math. Phys. 43431
[20] Izmest'ev A A, Pogosyan G S, Sissakian A N and Winternitz P 1999 J. Math. Phys. 401549
[21] Rañada M F, Santander M and Sanz-Gil T 2002 Superintegrable Potentials and the Superposition of Higgs Oscillators on the Sphere S^{2} (Warszawa: Banach Center Publications) at press
[22] Ballesteros A and Ragnisco O 1998 J. Phys. A: Math. Gen. 313791
[23] Ballesteros A and Herranz F J 1999 J. Phys. A: Math. Gen. 32885

