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Abstract
A unified algebraic construction of the classical Smorodinsky–Winternitz
systems on the ND sphere, Euclidean and hyperbolic spaces through the
Lie groups SO(N + 1), ISO(N) and SO(N, 1) is presented. Firstly, general
expressions for the Hamiltonian and its integrals of motion are given in a linear
ambient space R

N+1, and secondly they are expressed in terms of two geodesic
coordinate systems on the ND spaces themselves, with an explicit dependence
on the curvature as a parameter. On the sphere, the potential is interpreted as
a superposition of N + 1 oscillators. Furthermore, each Lie algebra generator
provides an integral of motion and a set of 2N − 1 functionally independent
ones are explicitly given. In this way the maximal superintegrability of the
ND Euclidean Smorodinsky–Winternitz system is shown for any value of the
curvature.

PACS numbers: 02.30.Ik, 02.20.Qs, 02.40.Ky

Superintegrable systems on the two- and three-dimensional (3D) Euclidean spaces have been
classified in [1, 2], and also extended to the 2D and 3D spheres [3] as well as to the hyperbolic
spaces [4, 5]. Recent classifications of superintegrable systems for these 2D Riemannian spaces
can be found in [6–8]. In the 2D sphere there are two (maximal) superintegrable potentials:
the harmonic oscillator (tan2 r) with ‘centrifugal terms’ and the Kepler or Coulomb potential
(1/tan r) with some ‘additional’ terms. The former is the version with non-zero curvature
of the Smorodinsky–Winternitz (SW) system [9–12]. Both potentials tan2 r and 1/tan r on
the ND sphere have been studied in quantum mechanics in [13–15], and have been mutually
related in [16, 17].

The SW Hamiltonian on the ND Euclidean space is given by

H = 1

2

N∑
i=1

(
p2

i + 2β0q
2
i +

2βi

q2
i

)
. (1)
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The following functions are integrals of motion for (1) (i < j ; i, j = 1, . . . , N):

I0i = P̃ 2
i + 2β0q

2
i + 2

βi

q2
i

with P̃ i = pi (2)

Iij = J̃ 2
ij + 2βi

q2
j

q2
i

+ 2βj

q2
i

q2
j

with J̃ ij = qipj − qjpi . (3)

Set (2) comes from the separability of the Hamiltonian 2H = ∑
i I0i , while (3) are just the

square of the components of the angular momentum tensor and some additional terms. The
functions P̃ i, J̃ ij close the commutation relations of the Euclidean algebra iso(N) with respect
to the canonical Lie–Poisson bracket:

{f, g} =
N∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂g

∂qi

∂f

∂pi

)
. (4)

Our aim is to construct, simultaneously, the non-zero curvature version of (1) on the three
classical Riemannian spaces with constant curvature in arbitrary dimension, as well as to prove
its maximal superintegrability, from a group theoretical standpoint.

Let soκ(N + 1) be the real Lie algebra of the Lie group SOκ(N + 1) with generators
{J0i ≡ Pi, Jij } (i, j = 1, . . . , N ; i < j ) and non-vanishing commutation relations given by

[Jij , Jik] = Jjk [Jij , Jjk] = −Jik [Jik, Jjk] = Jij

[Jij , Pi ] = Pj [Jij , Pj ] = −Pi [Pi, Pj ] = κJij

(5)

with i < j < k. If we consider the following Cartan decomposition of soκ (N + 1):

soκ (N + 1) = h ⊕ p h = 〈Jij 〉 p = 〈Pi〉 (6)

where h is the Lie algebra of H � SO(N), we obtain a family of ND symmetric homogeneous
spaces SN

[κ] = SOκ (N + 1)/SO(N) parametrized by κ , which turns out to be the constant
sectional curvature of the space. Thus, Jij leave a point O invariant by acting as rotations,
while Pi generate translations that move O along N basic geodesics li orthogonal at
O. For κ >,=,< 0, SN

[κ] reproduces the sphere SN = SO(N + 1)/SO(N), Euclidean
EN = ISO(N)/SO(N) and hyperbolic HN = SO(N, 1)/SO(N) spaces, respectively. The
case κ = 0 is the contraction around O: SN → EN ← HN .

The vector representation of soκ(N + 1) is given by (N + 1) × (N + 1) real matrices:

Pi = −κe0i + ei0 Jij = −eij + eji (7)

where eij is the matrix with entries (eij )
l
m = δl

i δ
m
j . Any generator X of soκ(N + 1) fulfils

XT� + �X = 0 � = e00 + κ

N∑
i=1

eii = diag(1, κ, . . . , κ) (8)

so that any element G ∈ SOκ(N + 1) verifies GT�G = �. In this way, SOκ(N + 1) is
a group of linear transformations in an ambient space R

N+1, with Weierstrass coordinates
x = (x0, x1, . . . , xN), acting as the group of isometries of the bilinear form � via matrix
multiplication. The Lie group H � SO(N) = 〈Jij 〉 is the isotopy subgroup of the origin
O = (1, 0, . . . , 0) ∈ R

N+1. The space SN
[κ] is identified with the orbit of O, which is contained

in the ‘sphere’ �:

� ≡ x2
0 + κ

N∑
i=1

x2
i = 1 (9)
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and the metric on SN
[κ] comes from the flat ambient metric in R

N+1 in the form

ds2 = 1

κ

(
dx2

0 + κ

N∑
i=1

dx2
i

)∣∣∣∣∣
�

. (10)

A point Q ∈ SN
[κ] with Weierstrass coordinates x can be reached in different ways starting

from O through the action of N one-parametric subgroups of SOκ(N + 1):

x = exp(a1P1) exp(a2P2) · · · exp(aN−1PN−1) exp(aNPN)O
(11)

= exp(θNJN−1N) exp(θN−1JN−2N−1) · · · exp(θ2J12) exp(rP1)O.

The canonical parameters involved are intrinsic quantities on SN
[κ], called geodesic parallel

a = (a1, . . . , aN) and geodesic polar θ = (r, θ2, . . . , θN) coordinates of the point x:

x0 =
N∏

s=1

Cκ(as) = Cκ (r)

x1 = Sκ (a1)

N∏
s=2

Cκ(as) = Sκ (r) cos θ2

xi = Sκ(ai)

N∏
s=i+1

Cκ(as) = Sκ(r)

i∏
s=2

sin θs cos θi+1

xN = Sκ(aN) = Sκ (r)

N∏
s=2

sin θs

(12)

where the curvature-dependent functions Cκ (x) and Sκ(x) are defined by [17, 18]:

Cκ(x) =




cos
√

κx κ > 0

1 κ = 0

cosh
√−κx κ < 0

Sκ (x) =




1√
κ

sin
√

κx κ > 0

x κ = 0
1√−κ

sinh
√−κx κ < 0

. (13)

The κ-tangent is defined by Tκ (x) = Sκ (x)/Cκ(x); its contraction κ = 0 is T0(x) = x.
Each parallel coordinate ai , associated with Pi , has dimensions of length: a1 is the

distance between O and a point Q1, measured along the basic geodesic l1; a2 is the distance
between Q1 and another point Q2, measured along a geodesic l′2 through Q1 and orthogonal
to l1 (and ‘parallel’ in the sense of parallel transport to l2) and so on, up to reaching Q [18].
On the other hand, the first polar coordinate r , associated with P1, has dimensions of length
and is the distance between O and Q measured along the geodesic l joining both points. The
remaining θi , associated with Ji−1i , are ordinary angles, the polar angles of l relative to the
reference flag at O spanned by {l1}, {l1, l2}, . . . . on the sphere SN with positive curvature
κ = 1/R2, the usual spherical coordinates, all of which are angles, differ from ours [19] only
in the first coordinate, which conventionally is taken as the dimensionless quantity r/R (see
for instance [20]). When κ = 0, we recover directly the Cartesian and polar coordinates
on EN .

Next, by introducing (12) in (10), we obtain the metric in SN
[κ]:

ds2 =
N−1∑
i=1

(
N∏

s=i+1

C2
κ(as)

)
da2

i + da2
N

= dr2 + S2
κ(r)

(
dθ2

2 +
N∑

i=3

(
i−1∏
s=2

sin2 θs

)
dθ2

i

)
(14)
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which provides the kinetic energyT in terms of the velocities (q̇ = ȧ, θ̇ ), that is, the Lagrangian
L ≡ T of a geodesic motion on SN

[κ]. If we introduce the canonical momenta p = ∂L/∂q̇

(p = p, π), we obtain the free Hamiltonian H ≡ T on SN
[κ]:

T = 1

2

(
N−1∑
i=1

p2
i∏N

s=i+1 C2
κ(as)

+ p2
N

)

= 1

2

(
π2

1 +
π2

2

S2
κ (r)

+
N∑

i=3

π2
i

S2
κ(r)

∏i−1
s=2 sin2 θs

)
. (15)

An N-particle realization of soκ (N + 1) in the phase space is obtained by starting from the
following expressions in terms of Weierstrass coordinates:

P̃ i (x(q), ẋ(q, p)) = x0ẋi − xiẋ0 J̃ ij (x(q), ẋ(q, p)) = xiẋj − xj ẋi (16)

and expressing everything either in parallel (a, p) or polar (θ, π) canonical coordinates and
momenta. In geodesic parallel coordinates, we obtain that (i, j = 1, . . . , N)

P̃ i =
i∏

k=1

Cκ (ak)Cκ(ai)pi + κSκ (ai)

i∑
s=1

Sκ (as)

∏s
m=1Cκ(am)∏i
l=sCκ(al)

ps

J̃ ij =Sκ (ai)Cκ (aj )

j∏
s=i+1

Cκ (as)pj − Cκ(ai)Sκ(aj )∏j

k=i+1Cκ (ak)
pi

+ κSκ(ai)Sκ(aj )

j∑
s=i+1

Sκ(as)

∏s
m=i+1Cκ(am)∏j

l=sCκ(al)
ps

(17)

while in geodesic polar coordinates the same quantities read (i, j = 1, . . . ,N − 1)

P̃ i =
∏i+1

k=2 sin θk

tan θi+1
π1 +

i+1∑
s=2

∏i+1
m=s sin θm cos θsπs

Tκ(r) tan θi+1
∏s

l=2 sin θl

− πi+1

Tκ (r)
∏i+1

l=2 sin θl

P̃ N =
N∏

k=2

sin θkπ1 +
N∑

s=2

∏N
m=s sin θm cos θs

Tκ (r)
∏s

l=2 sin θl

πs

J̃ ij = sin θi+1 cos θj+1

j∏
k=i+1

sin θkπi+1 − cos θi+1 sin θj+1∏j

l=i+1 sin θl

πj+1

+ cos θi+1 cos θj+1

j∑
s=i+1

∏j
m=s sin θm cos θs∏s

l=i+1 sin θl

πs

J̃ iN = sin θi+1

N∏
k=i+1

sin θkπi+1 + cos θi+1

N∑
s=i+1

∏N
m=s sin θm cos θs∏s

l=i+1 sin θl

πs .

(18)

Both sets of generators (17) and (18) fulfil the commutation rules (5) with respect to the
canonical Poisson bracket. The kinetic energy is related to the second-order Casimir of
soκ (N + 1) through

2T = C̃ =
N∑

i=1

P̃ 2
i + κ

N∑
i,j=1

J̃ 2
ij (19)

so that any generator Poisson-commutes with T . The geodesic motion is maximally
superintegrable and its integrals of motion come from any function of the Lie generators.
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Now the crucial problem is to find potentialsU(q) that can be added to T in such a manner
that the new Hamiltonian H = T + U preserves the maximal superintegrability. This requires
adding ‘some’ terms to ‘some’ functions of the generators in order to ensure their involutivity
with respect to H. By taking into account the results given in [6] for S2 and H2, we propose
the following generalization of the SW potential (1) to the space SN

[κ]:

U = β0

∑N
s=1 x2

s

x2
0

+
N∑

i=1

βi

x2
i

= β0

N∑
i=1

S2
κ (ai)∏i

s=1 C2
κ(as)

+
N−1∑
i=1

βi

S2
κ(ai)

∏N
s=i+1 C2

κ (as)
+

βN

S2
κ (aN)

= β0T
2
κ (r)

+
1

S2
κ (r)

(
β1

cos2 θ2
+

N−1∑
i=2

βi

cos2 θi+1
∏i

s=2 sin2 θs

+
βN∏N

s=2 sin2 θs

)
. (20)

On the sphere SN with κ > 0, this can be interpreted as the joint potential due to a superposition
of N + 1 harmonic oscillators whose centres are placed at N + 1 points on SN mutually
separated a quadrant (a distance π/2

√
κ, which for κ = 1 is π/2); on S2 these would be

placed at the three vertices of an sphere’s octant [21]. Explicitly, if we take κ = 1 and
consider the polar coordinate r together with N geodesic distances ri (i = 1, . . . , N) such that
x0 = cos r, xi = cos ri , the potential (20) turns out to be

U = β0 tan2 r +
N∑

i=1

βi

cos2 ri

= β0 tan2 r +
N∑

i=1

βi tan2 ri +
N∑

i=1

βi. (21)

The first term is β0 tan2 r , where r is the distance from the particle and the origin O along the
geodesic l; this is the spherical Higgs potential with centre at O where the 0th coordinate axis
x0 in the ambient space intersects the sphere. Each of the N remaining terms (apparently very
different in (20)), βi tan2 ri , is written in terms of the spherical distance ri to the point where
the ith coordinate axis xi intersects the sphere. Under the contraction κ = 0, SN → EN ,
the first term gives rise to the ‘flat’ harmonic oscillator r2 = ∑

i a
2
i , while the N remaining

oscillators (whose centres would be now ‘at infinity’) leave the ‘centrifugal’ barriers βi

/
a2

i as
their imprints.

Let us consider the following functions Iij (i < j ; i, j = 0, 1, . . . , N):

Iij = (xiẋj − xj ẋi )
2 + 2βi

x2
j

x2
i

+ 2βj

x2
i

x2
j

(22)

which are quadratic in the momenta through the square of the generators. In parallel
coordinates with the phase-space realization (17), they turn out to be

I0i = P̃ 2
i + 2β0

S2
κ (ai)∏i

s=1 C2
κ (as)

+ 2βi

∏i
s=1C2

κ (as)

S2
κ(ai)

Iij = J̃ 2
ij + 2βi

S2
κ (aj )

S2
κ(ai)

∏j

s=i+1 C2
κ(as)

+ 2βj

S2
κ(ai)

∏j

s=i+1 C2
κ (as)

S2
κ (aj )

.

(23)

Likewise these can be written in geodesic polar coordinates. Hereafter, we consider the
Hamiltonian H = T + U with T and U given in (15) and (20). Note that the analogous
property to (19) is given by

2H =
N∑

i=1

I0i + κ

N∑
i,j=1

Iij + 2κ

N∑
i=1

βi. (24)
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When κ = 0, the expressions (17), (23) and (24) reduce to (1)–(3). Next it can be proven that:

Proposition 1. The N(N + 1)/2 functions (23) are integrals of the motion for H.

Let us choose the following subsets Q(k) and Q(k) of N − 1 integrals (k = 2, . . . , N):

Q(k) =
k∑

i,j=1

Iij Q(k) =
N∑

i,j=N−k+1

Iij (25)

where Q(N) ≡ Q(N). The maximal superintegrability of H is characterized as follows.

Theorem 2.

(i) The N functions {Q(2), . . . ,Q(N),H} are mutually in involution. The same property holds
for the set {Q(2), . . . ,Q(N),H}.

(ii) The 2N − 1 functions {Q(2), . . . ,Q(N−1),Q(N) ≡ Q(N),Q(N−1), . . . ,Q(2), I0i ,H} (with
i fixed) are functionally independent, thus H is maximally superintegrable.

The set Q(k) can be associated with a sequence of orthogonal subalgebras within
h = so(N) = 〈Jij 〉, the generators of which determine the terms quadratic in the momenta in
the integrals Iij starting ‘upwards’ from 〈J12〉 = so(2):

Q(2) ⊂ Q(3) ⊂ . . . ⊂ Q(k) ⊂ . . . ⊂ Q(N−1) ⊂ Q(N)

so(2) ⊂ so(3) ⊂ . . . ⊂ so(k) ⊂ . . . ⊂ so(N − 1) ⊂ so(N)

with a similar embedding for Q(k) but starting ‘backwards’ from 〈JN−1 N 〉 = so(2). In fact, the
SW system on EN can be constructed from a coalgebra approach [22] by means of N copies of
sl(2, R). When κ = 0, each Q(k) (or Q(k)) is related to the kth order coproduct of the Casimir
of sl(2, R) [23]. In this sense, the results of theorem 2 show that the set of integrals ensuring
the maximal superintegrability of the ‘flat’ SW system coming from a sl(2, R)-coalgebra also
hold for any curvature.

Explicit proofs and details for this algebraic construction (which could also be applied to
the ND Kepler potential) will be given elsewhere. Furthermore, the consideration of a second
contraction parameter κ2, that determines the signature of the metric [17, 18], would allow
one to obtain superintegrable systems on different spacetimes.
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